Tag Archives: hydraulic hammer parts

China Best Sales Hammer Cylinder MB1500 Hydraulic Breaker Front Head for Rock Hammer Spare Parts vacuum pump design

Product Description

Hammer Cylinder MB1500 Hydraulic Breaker Front Head for Rock Hammer Spare Parts

Product Parameters 

Model NO. MB1500 Hydraulic Breaker Front Head Product Name MB1500 MB-1500 Hydraulic Breaker Cylinder
MOQ 1 piece Material 42Crmo
Color As Required Stock Yes
Condition New Shippment Air, Sea,Express

Atlas copco Series

SB50 SB450 SBC800 TEX700
SB52 SB452 SBC850 TEX900
SB100 SB552 HB2000 TEX1400
SB102 SBC115 HB2200 TEX1800
SB150 SBC225 HB2500 TEX2000
SB152 SBC410 HB3000 PB310
SB200 SBC610 HB3100 PB420
SB300 SBC650 HB3600 PB530
HB4100/4200 TEX80 MB700/750 MB500
HB4700 TEX100 MB800 HBC6000
HB5800 TEX110 MB1000 PB110
HB7000 TEX180 MB1200 PB160
HBC1100 TEX200 MB1500 PB210
HBC1700 TEX250 TEX600 MB1600
HBC2500 TEX400 TEX75 MB1700
HBC4000      

TOKU Rock Breaker Damper Model

TNB-08M TNB-1M TNB-1E TNB-2M
TNB-2E TNB-3M TNB-3E TNB-4E
TNB-4M TNB-5M TNB-5E TNB-6M
TNB-6E TNB-6B TNB-6.5E TNB-7M
TNB-7B TNB-7E TNB-8A TNB-10E
TNB-13A TNB-13E TNB-14B TNB-14D
TNB-14E TNB-15E TNB-16B TNB-16E
TNB-22E TNB-23E TNB-30E TNB-31E
TNB-38E TNB-100 TNB-141 TNB-150
TNB-151 TNB-190 TNB-220 TNB-230
TNB-310 TNB-400    

Hot Products
If you have other breaker spare parts demand, such as Rod pin, Tool pin, Through bolt, Side bolt, Piston, Diaphragm, Seal kit, Ring bush, Front cover, Control valve, Accumulator, etc, please click the below pictures for more information, we believe we can save much of your time and be your ONE-STOP supplier.

MSB Series

MS200 MS450 MS800 XIHU (WEST LAKE) DIS.20
MS220 MS460 MS900 XIHU (WEST LAKE) DIS.30
MS225 MS500 MS1000 XIHU (WEST LAKE) DIS.40
MS250 MS520 MS35AT XIHU (WEST LAKE) DIS.50
MS255 MS550 MS45AT XIHU (WEST LAKE) DIS.55
MS300 MS600 MS55AT XIHU (WEST LAKE) DIS.81
MS400 MS700 MS75AT XIHU (WEST LAKE) DIS.100
XIHU (WEST LAKE) DIS.120 XIHU (WEST LAKE) DIS.350 XIHU (WEST LAKE) DIS.300 XIHU (WEST LAKE) DIS.210
XIHU (WEST LAKE) DIS.180 XIHU (WEST LAKE) DIS.400 XIHU (WEST LAKE) DIS.510 XIHU (WEST LAKE) DIS.220
XIHU (WEST LAKE) DIS.200 XIHU (WEST LAKE) DIS.500 XIHU (WEST LAKE) DIS.250  

FURUKAWA Series

HB35G F22 F9 F1
HB18G F17 F4 HB200
HB10G F11 F2 HB4R
HB20G F19 F5 HB300
HB15G F12 F3 HB100
HB30G F20 F6 HB400
FX15 HB8G FXJ475 HB3R
F35 HB2G FXJ175 HB05R
F27 HB5G FX360 HB40G
F45 HB3G FXJ275 HB1R
F30 HB1G FX470 HB50G
F70 HB5G FXJ375 HB2R
FX220 FX55 FX65 FX35
FX45 FX25    

SOOSA*N Series

 

SQ80 SB50 SB100 SU+55
SQ130 SB80 SB130 SU+125
SQ140 SB81 SB140 SU+145
SQ100 SB60 SB120 SU+85
SQ120 SB70 SB121 SB10
SQ150 SB81A SB145 SB35
SQ180 SB81N SB150 SB40
SB151 SU+105 SH35G SB20
SB162 SU+155 SH400 SB30
SB202 SU+165 SH700 SB43
SB152 ST200 SH40G SB45
SB160 ET300 SH200  
SH18G ST300 SQ60  
SH20G ET200 SQ70  

 

GENERAL Series

 

GB2T GB3T GB4T GB270E
GB8T GB5T GB6T GB290E
GB8AT GB9F GB130E GB300E
GB11T GB50E GB170E GB400E
GB14T GB230E GB228E GB500E

Montabert Series

BRV32 BRM900 BRH625 BRP130
BRV43 BRM1200V BRH750 BRP140
BRV45 BRM1600V BRH750 BRP150
BRV53 BRH125 BRH110 XL1700
BRV55 BRH250 BRP40 XI1900
BRV65 BRH501 BRP70  

DAEMO Series

DMB03 S3600 S45
DMB04 S500-V S2200-2
DMB4000 DMB06 S2200-1
S150-V DMB5000 S900-V
S1800-V S1300-V S2500
S3000    

 

KONAN Series

MKB500 MKB800
MKB900 MKB1200/N
MKB1300/N MKB1400/N/V
MKB1500 MKB1600
MKB1700 MKB1800

NPK Series

 

H1XA H2X/XA/XE H3XA/XE H4X/XE
GH1 H30X H12X/XE H20X/XE
GH2 GH3 H14X H11X
GH6 GH4 H16/16XE E212
GH9 GH5 GH10 GH12
GH18 E208 E18X E24X
E12X E215 E15X E213
E216 E218 E220 E225
H5X E210 H10XA/XB/XE E240
H6X/XA E212 H8X/XA GH15
H7X E224    

ATLAS COPCO Series

SB50 SB450 SBC800 HB4100/4200
SB52 SB452 SBC850 HB4700
SB100 SB552 HB2000 HB5800
SB102 SBC115 HB2200 HB7000
SB150 SBC225 HB2500 HBC1100
SB152 SBC410 HB3000 HBC1700
SB200 SBC610 HB3100 HBC2500
SB300 SBC650 HB3600 HBC4000
HBC6000 TEX80 TEX700 MB700/750
PB110 TEX100 TEX900 MB800
PB160 TEX110 TEX1400 MB1000
PB210 TEX180 TEX1800 MB1200
PB310 TEX200 TEX2000 MB1500
PB420 TEX250 MB1600  
PB530 TEX400 MB1700  
MB500 TEX600 TEX75  

And also can be supply related poducts spare parts

Seal Kit Diaphragm Chisel
Lower Bush Upper Bush Thrust Bush
Side Rod Assy Stop Pin Tie Rod
Retainer Pin Pipe Clamp Auxiliary Valve
Moil Chisel Wedge Chisel Blunt Chisel
Through Bolt Set Side Bolt Charging Valve
Back Cylinder Front Cylinder Piston
Cone Chisel Oring box Hose Pipe
Accumulator Wear Bush Coupling
Hydraulic Breaker Valve Rod Chisel Membrane

 

More Available Brand Hydraulic Hammer Model

K*RUPP HM900,HM901,HM902,HM950,HM960,etc
RAMMER S23,S24,S25,S26,E63,E64,E66,E68,G90,G100,etc
INDECO MES2500,MES3000,MES3500,MES4000,etc
EVERDIGM RHB305,RHB313,RHB320,RHB321,RHB323,RHB324,RHB325,RHB326,etc
BLT/EDT BLT80-1,BLT80-2,BLT81,BLT100/EDT2000,EDT2200,EDT3000,EDT3200,EDT3500,etc
KWANGLIM SG200,SG300,SG350,SG400,SG600,SG800,SG1800,SG2000,SG2100,SG2500,
SG2800,SG3300,SG4000,SG1200
RAMMER M300,M600,M700,M900,XL1000,,XL1300,XL1600,XL1700,XL1900,,XL1700,XL2600

About us
Koko Shop Machine Co., Ltd (EB Seals) is a professional supplier for hydraulic breaker parts and excavator parts and OEM hydraulic seals manufacturer. We specialize in completed seal kits and separate seals for hydraulic breaker and excavator more than Ten years in HangZhou, China. Koko Shop supply almost all brands breakers’ parts like Seal kits, Diaphragm, Piston, Chisel, Wear Bush upper and lower, Rod Pin, Through Bolts, Side Bolts, Control Valve,Front Head, Cylinder, Accumulator, N2 Gas Charging Kit, etc. We insist on high quality parts with genuine and OEM after market replacement parts.

FAQ

Q1. How many days for the delivery time ?
It is about 1-7 working days after the order confirmation.

Q2. What kind of payments you accept?
Now we accept T/T,L/C or Western Union,other terms also could be negotiated,Recommended Trade Assurance to guarantee buyer’s property.

Q3. Are you able to manufacturing products according to customer’s design?
Sure,we have made many special orders from oversea for 10 years since 2571. So we have enough ability to deal with any cases. OEM certificate is available to provided.

Q4. What’s your advantages in the machinery manufacturing industry?
Fast delivery time,High quality products,Best customer service,Adopting the latest production technology.

Q5. Which countries have you been exported recently?
Canada,Australia,Peru,Egypt,Brazil,Mexico,South Africa,etc.

Q6. Are you sure that your product will suit for our excavator?
We have different brand hydraulic breakers. Show me your model number,and we can give you best match products.

Q7. How about the packing of the goods?
Standard export package,wood cases,or as customers’ demands.

Warranty: 3-6 Months
Type: Damper
Application: Excavator
Certification: CE
Performance: Front Head
Suitable: Hydraulic Breaker Front Head
Customization:
Available

|

hydraulic cylinder

How do hydraulic cylinders compare to other methods of force generation like electric motors?

Hydraulic cylinders and electric motors are two different methods of force generation with distinct characteristics and applications. While both hydraulic cylinders and electric motors can generate force, they differ in terms of their working principles, performance attributes, and suitability for specific applications. Here’s a detailed comparison of hydraulic cylinders and electric motors:

1. Working Principle:

– Hydraulic Cylinders: Hydraulic cylinders generate force through the conversion of fluid pressure into linear motion. They consist of a cylinder barrel, piston, piston rod, and hydraulic fluid. When pressurized hydraulic fluid enters the cylinder, it pushes against the piston, causing the piston rod to extend or retract, thereby generating linear force.

– Electric Motors: Electric motors generate force through the conversion of electrical energy into rotational motion. They consist of a stator, rotor, and electromagnetic field. When an electrical current is applied to the motor’s windings, it creates a magnetic field that interacts with the rotor, causing it to rotate and generate torque.

2. Force and Power:

– Hydraulic Cylinders: Hydraulic cylinders are known for their high force capabilities. They can generate substantial linear forces, making them suitable for heavy-duty applications that require lifting, pushing, or pulling large loads. Hydraulic systems can provide high force output even at low speeds, allowing for precise control over force application. However, hydraulic systems typically operate at lower speeds compared to electric motors.

– Electric Motors: Electric motors excel in providing high rotational speeds and are commonly used for applications that require rapid motion. While electric motors can generate significant torque, they tend to have lower force output compared to hydraulic cylinders. Electric motors are suitable for applications that involve continuous rotary motion, such as driving conveyor belts, rotating machinery, or powering vehicles.

3. Control and Precision:

– Hydraulic Cylinders: Hydraulic systems offer excellent control over force, speed, and positioning. By regulating the flow of hydraulic fluid, the force and speed of hydraulic cylinders can be precisely controlled. Hydraulic systems can provide gradual acceleration and deceleration, allowing for smooth and precise movements. This level of control makes hydraulic cylinders well-suited for applications that require precise positioning, such as in industrial automation or construction equipment.

– Electric Motors: Electric motors also offer precise control over speed and positioning. Through motor control techniques such as varying voltage, frequency, or pulse width modulation (PWM), the rotational speed and position of electric motors can be accurately controlled. Electric motors are commonly used in applications that require precise speed control, such as robotics, CNC machines, or servo systems.

4. Efficiency and Energy Consumption:

– Hydraulic Cylinders: Hydraulic systems can be highly efficient, especially when properly sized and designed. However, hydraulic systems typically have higher energy losses due to factors such as fluid leakage, friction, and heat generation. The overall efficiency of a hydraulic system depends on the design, component selection, and maintenance practices. Hydraulic systems require a hydraulic power unit to pressurize the hydraulic fluid, which consumes additional energy.

– Electric Motors: Electric motors can have high efficiency, especially when operated at their optimal operating conditions. Electric motors have lower energy losses compared to hydraulic systems, primarily due to the absence of fluid leakage and lower friction losses. The overall efficiency of an electric motor depends on factors such as motor design, load conditions, and control techniques. Electric motors require an electrical power source, and their energy consumption depends on the motor’s power rating and the duration of operation.

5. Environmental Considerations:

– Hydraulic Cylinders: Hydraulic systems typically use hydraulic fluids that can pose environmental concerns if they leak or are not properly disposed of. The choice of hydraulic fluid can impact factors such as biodegradability, toxicity, and potential environmental hazards. Proper maintenance and leak prevention practices are essential to minimize the environmental impact of hydraulic systems.

– Electric Motors: Electric motors are generally considered more environmentally friendly since they do not require hydraulic fluids. However, the environmental impact of electric motors depends on the source of electricity used to power them. When powered by renewable energy sources, such as solar or wind, electric motors can offer a greener solution compared to hydraulic systems.

6. Application Suitability:

– Hydraulic Cylinders: Hydraulic cylinders are commonly used in applications that require high force output, precise control, and durability. They are widely employed in industries such as construction, manufacturing, mining, and aerospace. Hydraulic systems are well-suited for heavy-duty applications, such as lifting heavy objects, operating heavy machinery, or controlling large-scale movements.

– Electric Motors: Electric motors are widely used in various industries and applications that require rotational motion, speed control, and precise positioning. They are commonly found in appliances, transportation, robotics, HVAC systems, and automation. Electric motorsare suitable for applications that involve continuous rotary motion, such as driving conveyor belts, rotating machinery, or powering vehicles.In summary, hydraulic cylinders and electric motors have different working principles, force capabilities, control characteristics, efficiency levels, and application suitability. Hydraulic cylinders excel in providing high force output, precise control, and durability, making them ideal for heavy-duty applications. Electric motors, on the other hand, offer high rotational speeds, precise speed control, and are commonly used for applications that involve continuous rotary motion. The choice between hydraulic cylinders and electric motors depends on the specific requirements of the application, including the type of motion, force output, control precision, and environmental considerations.

hydraulic cylinder

Integration of Hydraulic Cylinders with Equipment Requiring Rapid and Dynamic Movements

Hydraulic cylinders can indeed be integrated with equipment that requires rapid and dynamic movements. While hydraulic systems are generally known for their ability to provide high force and precise control, they can also be designed and optimized for applications that demand fast and dynamic motion. Let’s explore how hydraulic cylinders can be integrated with such equipment:

  1. High-Speed Hydraulic Systems: Hydraulic cylinders can be part of high-speed hydraulic systems designed specifically for rapid and dynamic movements. These systems incorporate features such as high-flow valves, optimized hydraulic circuitry, and responsive control systems. By carefully engineering the system components and hydraulic parameters, it is possible to achieve the desired speed and responsiveness, enabling the equipment to perform rapid movements.
  2. Valve Control: The control of hydraulic cylinders plays a crucial role in achieving rapid and dynamic movements. Proportional or servo valves can be used to precisely control the flow of hydraulic fluid into and out of the cylinder. These valves offer fast response times and precise flow control, allowing for rapid acceleration and deceleration of the cylinder’s piston. By adjusting the valve settings and optimizing the control algorithms, equipment can be designed to execute dynamic movements with high speed and accuracy.
  3. Optimized Cylinder Design: The design of hydraulic cylinders can be optimized to facilitate rapid and dynamic movements. Lightweight materials, such as aluminum alloys or composite materials, can be used to reduce the moving mass of the cylinder, enabling faster acceleration and deceleration. Additionally, the cylinder’s internal components, such as the piston and seals, can be designed for low friction to minimize energy losses and enhance responsiveness. These design optimizations contribute to the overall speed and dynamic performance of the equipment.
  4. Accumulator Integration: Hydraulic accumulators can be integrated into the system to enhance the dynamic capabilities of hydraulic cylinders. Accumulators store pressurized hydraulic fluid, which can be rapidly released to supplement the flow from the pump during high-demand situations. This stored energy can provide an extra boost of power, allowing for faster and more dynamic movements. By strategically sizing and configuring the accumulator, the system can be optimized for the specific rapid and dynamic requirements of the equipment.
  5. System Feedback and Control: To achieve precise and dynamic movements, hydraulic systems can incorporate feedback sensors and advanced control algorithms. Position sensors, such as linear potentiometers or magnetostrictive sensors, provide real-time position feedback of the hydraulic cylinder. This information can be used in closed-loop control systems to maintain precise positioning and execute rapid movements. Advanced control algorithms can optimize the control signals sent to the valves, ensuring smooth and dynamic motion while minimizing overshooting or oscillations.

In summary, hydraulic cylinders can be integrated with equipment that requires rapid and dynamic movements by utilizing high-speed hydraulic systems, employing responsive valve control, optimizing cylinder design, integrating accumulators, and incorporating feedback sensors and advanced control algorithms. These measures enable hydraulic systems to deliver the speed, responsiveness, and precision necessary for equipment operating in dynamic environments. By leveraging the capabilities of hydraulic cylinders, manufacturers can design and integrate systems that meet the requirements of applications demanding rapid and dynamic movements.

hydraulic cylinder

Can you explain the role and significance of hydraulic cylinders in machinery?

Hydraulic cylinders play a crucial role in machinery across various industries. They are essential components that provide controlled and powerful linear motion, enabling the operation of heavy equipment and facilitating numerous tasks. The role and significance of hydraulic cylinders in machinery can be explained in detail as follows:

Role of Hydraulic Cylinders:

– Conversion of Hydraulic Energy: Hydraulic cylinders convert hydraulic energy, typically in the form of pressurized hydraulic fluid, into linear force and motion. This conversion allows machinery to perform tasks such as lifting, pushing, pulling, clamping, tilting, and controlling various mechanisms.

– Generation of Linear Motion: Hydraulic cylinders generate linear motion by utilizing the principles of Pascal’s law. When hydraulic fluid is directed into one side of the cylinder, it applies pressure on the piston, resulting in linear movement of the piston and the attached piston rod. This linear motion can be used to actuate other components within the machinery or directly perform the required task.

– Force Generation: Hydraulic cylinders are capable of generating high forces due to the hydraulic pressure applied to the piston. The force output of a hydraulic cylinder depends on the surface area of the piston and the pressure of the hydraulic fluid. This force allows machinery to exert significant power for lifting heavy loads, applying pressure, or overcoming resistance.

– Precise Control: Hydraulic cylinders offer precise control over the linear motion and force exerted. By regulating the flow of hydraulic fluid, the speed and direction of the cylinder’s movement can be accurately adjusted. This level of control is crucial in machinery that requires precise positioning, delicate movements, or synchronization of multiple cylinders.

– Integration with Hydraulic Systems: Hydraulic cylinders are integral parts of hydraulic systems used in machinery. They work in conjunction with hydraulic pumps, valves, and actuators to create a complete hydraulic circuit. This integration allows for efficient power transmission, control, and coordination of various machine functions.

Significance of Hydraulic Cylinders:

– Heavy Equipment Operation: Hydraulic cylinders are vital in heavy machinery used in construction, mining, agriculture, material handling, and other industries. They enable the lifting and movement of heavy loads, the operation of attachments, and the performance of tasks that require high force and precision.

– Versatility and Adaptability: Hydraulic cylinders are versatile components that can be designed and tailored to meet specific machinery requirements. They can be integrated into various types of equipment and customized based on factors such as force capacity, stroke length, speed, and mounting options. This adaptability makes hydraulic cylinders suitable for diverse applications.

– Durability and Reliability: Hydraulic cylinders are built to withstand rigorous operating conditions, including high pressures, heavy loads, and continuous use. They are designed with robust materials, precise machining, and effective sealing systems to ensure durability and reliability over extended periods of operation.

– Safety and Load Control: Hydraulic cylinders provide safe and controlled operation in machinery. They offer overload protection mechanisms, such as relief valves, to prevent damage caused by excessive force or pressure. Additionally, hydraulic cylinders allow for precise load control, minimizing the risk of accidents during lifting, lowering, or positioning of heavy loads.

– Compact Design: Hydraulic cylinders offer a high power-to-size ratio, allowing for compact machinery design. Their relatively small size compared to the forces they can generate makes them suitable for applications where space is limited or weight restrictions apply.

– Energy Efficiency: Hydraulic cylinders contribute to energy efficiency in machinery. The use of hydraulic systems allows for the transfer of power over long distances without significant power losses. Additionally, hydraulic cylinders can incorporate energy-saving features such as load-sensing technology and regenerative circuits, reducing energy consumption.

Overall, hydraulic cylinders play a vital role in machinery by providing controlled and powerful linear motion. Their significance lies in their ability to convert hydraulic energy, generate high forces, offer precise control, integrate with hydraulic systems, and facilitate the operation of heavy equipment across various industries. Hydraulic cylinders contribute to increased productivity, safety, and efficiency in machinery applications, making them indispensable components in modern-day engineering.

China Best Sales Hammer Cylinder MB1500 Hydraulic Breaker Front Head for Rock Hammer Spare Parts   vacuum pump design		China Best Sales Hammer Cylinder MB1500 Hydraulic Breaker Front Head for Rock Hammer Spare Parts   vacuum pump design
editor by CX 2023-10-12